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Types of Conversational Al

“converse coherently and engagingly with humans
on popular topics and current events”

Socialbots

© [IL o

Task Domain Dialog
Definition Coverage Initiative
task-oriented single-domain system-initiative
non-task-oriented multi-domain user-initiative

open-domain mixed-initiative



Socialbot Applications

o Entertainment, education, healthcare, companionship, ...

o A conversational gateway to online content

‘ i . : Socialbot H

Conversational User Interface

The Washington Post
N 4 6
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Design Objectives

/‘

e Users can control the dialog flow

User- and switch topics at any time

. <
Centric e Bot responses are adapted to

acknowledge user reactions

e Content cover the wide range of
Content- user interests

Driven e Dialog strategies to lead or
contribute to the dialog flow
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Dialog Control for Many Miniskills?

Conversation
Activities
(Miniskills)

==

— 0 Greet

o List Topics

o Tell Fun Facts
Tell Jokes

Tell Headlines
Discuss Movies

Personality Test

O O O O O
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Hierarchical Dialog Management

o Dialog Context Tracker
o dialog state, topic/content/miniskill history, user personality

o Master Dialog Manager '
o miniskill polling

o topic and miniskill backoff

o Miniskill Dialog Managers
o miniskill dialog control as a finite-state machine
o retrieve content & build response plan




Social Chat Knowledge

facebook

The Washington Post

N

An important type of
social chat knowledge is
online content.

How to organize
content to facilitate
the dialog control?

A framework that allows
dialog control to be defined

In a consistent way.
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Knowledge Graph

UT Austin and Google Al use
o Nodes machine learning on data from
NASA's Kepler Space Telescope
to discover an eighth planet
o topic (entity or generic topic) circling a distant star.

o content post (fact, movie, news article, ...)

o Relational edges between content

nost and topic category tag | | tOPic mention
o topic mention (NER, noun phrase extraction)

o category tag (Reddit meta-information) science
o movie name, genre, director, actor (IMDB)

o Dialog Control: move along edges
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Graph-Based

MOtivatiOn Document

Representation

o Dialog control defined based on moves on the graph

o lead the conversation
o handle user initiatives

o Challenges for unstructured document (e.g., news articles)
o not all sentences are equally interesting to a Iis% Storytelling

o need to figure out a coherent presenting order

o answer questions about the document ~—— 7] Question Answering & Asking

o need a smooth transition between sentences ___—{ Subject Entity

o handle entity-based information seeking requests

o handle opinion-seeking requests « Opinion Comment |




Graph-Based Document Representation

Entity 1

Entity 2

Entity 3

subject

Storytelling Chain

comment

answer

Question 1

Question 2

Question 3
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Document Representation Construction
N kenization
Text Pre-processing e forente

Sentence Split
Sentence Node Creation —
Sentence Filtering

Entity Node Creation | Part-of-Speech Tagging

Subject Edge Creation Constituency Parsing

Storytelling Chain Creation Named Entity Recognition

Question Generation
v ) Coreference Resolution
Comment Collection
Dependency Parsing

=
=
nv)
)
o
wn

Entity Linking




Storytelling Chain Creation

o Problem formulation the next NV
sentences
o context sentence sequence (s¢, Sy, ..., S1) following s in
o candidate sentence set {y{, V>, ..., Yn} the article
o candidate sentence chain (y; | s1, S5, ..., S1)
. . Bi Label
o Data collection: 550 news articles e et

o Train/Validation/Test: 3/1/1 based on article ID
L=1, N=4 662 1538

Positive
L=2, N=3 865 1064 Negative
0 500 1000 1500 2000 2500

Number of Candidate Sentence Chains

Sent 3




Model and Features

o Model: binary logistic regression
o input: candidate sentence chain (y; | 51,55, ..., 51) /

used for ranking
sentences given
S1,S9, -, SL.

o output: probability score s(y; | 51,53, ..., 5;) € RI01]

o Features

o Sentlmportance: r(y; |D) —

TextRank unsupervised summarization
on the document D

o SentDistance: d(y; | s1,55, ..., S;) = Sentldx(y;) - Sentldx(s;)

o SentEmbedding: e(y;) —

o ChainEmbedding: c(y; | s1,53, ..., S1.)

Pre-trained BERT
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Test Set Results

75

70

65

% the highest-ranked

sentence has a
positive label

60

55

50

next sentence is not always good

=1, N=4

il

L=2, N=3

SentDistance
B SentEmbedding
M Sentlmportance
B ChainEmbedding
m All
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Test Set Results

;5 _| sentence embedding alone 737
may capture some features \ 71.9

about importance / style 70.2

70 1| (e.g., length, informativeness)

66.3
65 - 64.8 SentDistance
63.2 :
: m SentEmbedd
% the highest-ranked 62.1 62.3 entEmbedding
sentence has a 0 | O Senflmportan.ce
positive label B ChainEmbedding
m All
cc | 547
50
L=1, N=4 L=2, N=3
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Test Set Results

75

70

65

% the highest-ranked

sentence has a
positive label

60

55

50

sentence importance
(document context) is
very useful

73.7

/ 66.3
64.8

63.2

62.1

54.7

62.3

L=1, N=4

L=2, N=3

SentDistance
B SentEmbedding
M Sentlmportance
B ChainEmbedding
m All
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Test Set Results

75

70

65

% the highest-ranked

sentence has a
positive label

60

55

50

dialog context is important
as the chain gets longer

“
+2.7

54.7

62.3

L=1, N=4

L=2, N=3

SentDistance
B SentEmbedding
M Sentlmportance
B ChainEmbedding
m All
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Test Set Results

75

70

65

% the highest-ranked

sentence has a
positive label

60

55

50

54.7

using all features (2050-dimensional) overfits

for L=2 (1239 training samples)

=1, N=4

73.7 \
71.9

70.2

69.3

66.3

62.3

L=2, N=3

SentDistance
B SentEmbedding
M Sentlmportance
B ChainEmbedding
m All
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. . Question 1
Question Generation KB

Dependency Parsing Universal Dependencies

Dependent Selection for Answer Question Interestingness/Importance

Question Type Classification : Hand-Crafted Decision Tree

Clause/Question Planning . Template-Based Planning

Clause/Question Realization Dependency-Based Realization

26



Question Generation

root
case nmod ccomp
amod — punct
nsubj — — punct —
~ | Xcomp 1 ——
compound or
— det — ] ccomp
| mark ! !
amod l det  |nsubj
\ Z \ \ 4 \ \ Z \ 4 \ 4 \ \l/ \ 4 L Z ‘l/\l' ‘1’ | A\ 4
ROOT Among leading U.S. carriers, Sprint was the only one to throttle Skype , the study found
constituents clause plan
/root /root/nsubj /root/ccomp . /root/nsubj /root
(found) (study) (one) (study) (found)
~. =
Question Type

(what, whether, who, why;, ...) 27




Evaluation of Generated Questions

o As a transition clause for introducing Sent2 given Sent1l

o do you want to know ?
‘

o 4 question generation methods Do you want to

know ?

O generic: more about this article

o constituency-based (Heilman, 2011)

o dependency-based

o human-written

o Human judgments on question pairs (A, B, cannot tell)

o 134 sentences, 5 judgments per pair
28



Ove ra I I Qu 3 I Ity dependency-based outperforms constituency-based,

but does not achieve “human performance”

vs. Generic vs. Human
BWin mTie Loss BWin mTie Loss
100% 100%
90% 90%
80% 44 80%
70% 59 70%
60% 60%

50%
40%
30%
20%
10%

0%

50%
40%
30%
20%
10%

0%

Constituency Dependency Constituency Dependency
29



dependency-based method generates much

I nfO 'm atlve NESS more informative questions (better than human)

vs. Generic vs. Human
B \Win ETie Loss Win ETie Loss
100% 100%
90% 21 90%
80% 35 80%

70%
60%
50%
40%
30%
20%
10%

0%

70%
60%
50%
40%
30%
20%
10%

0%

Constituency Dependency Constituency Dependency
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Transition Smoothness

vs. Generic

B Win ETie Loss

100%
90%
80%
70% 58
60% /3
50%
40%
30%
20%
10%

0%

Constituency Dependency

dialog context is important!

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
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vSs. Human
HmWinn mTie Loss
57
79

Constituency

Dependency
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Motivation: Evaluation & Diagnosis

o Users only give an optional conversation rating | Correlation
Analysis

o Aspects that influence user ratings?

o prior model-free metrics do not outperforms conversation length

o Structure of socialbot conversations? |
o prior models of dialog structure are not suitablw Multi-Level

Scoring
o Diagnosis calls for more than conversation scores

o a conversation can involve good and bad segments/topics/policies/...

33



Conversation Acts for User Turns

o AskQuestion o InterestedinContent

o RequestHelpOrRepeat o NotlnterestedlnContent
o ProposeTopic o PositiveToContent

o AcceptTopic o NegativeToContent

o RejectTopic o PositiveToBot

o FollowAndNonNegative| |o NegativeToBot

34



Pearsonr

CO rre I atlo n An a IyS | S with conversation user ratings

B hum [ Tpet 02 0.1 0 0.1 0.2

For each act 4

AskQuestion
* number of turns Ny RequestHelpOrRepeat
* percentage of turns P, ProposeTopic

AcceptTopic

RejectTopic
N, cannot tell any : °

InterestedinContent

Conversation Length ‘NotlnterestedInContent

r=0.15 PositiveToContent

NegativeToContent
PositiveToBot

NegativeToBot




Correlation Analysis

It is a good sign that
user follows the
conversation flow
when the bot is the
primary speaker

Design, learn, &
maintain engaging
conversation flows
(# system-initiative)

O

T um [ Tpet
AskQuestion

RequestHelpOrRepeat

ProposeTopic

NegativeToContent
PositiveToBot

NegativeToBot




Correlation Analysis

AskQuestion and
ProposeTopic
slightly impact user
ratings in the
negative direction

0 Tum [ Tpet

RequestHelpOrRepeat

Improve the bot’s
capability of
handling user
guestions and topic
requests

AcceptTopic
RejectTopic
FollowAndNonNegative
InterestedInContent
NotinterestedinContent
PositiveToContent
NegativeToContent
PositiveToBot

NegativeToBot
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Limitations

o Conversation ratings and conversation-act-based metrics

do not tell

o which topics are handled badly by the bot
o which dialog policies need improvement

o which content sources have less suitable quality

o Segment-level scores can tell us more, but

o how to segment a socialbot conversation?
o how to compute a segment-level score?

38



Hierarchical Dialog Model

o A conversation is a sequence of topical subdialogs,

each of which is a sequence of microsegments,

each of which contains posts

SmallTalk Cats Batman Robots  |EEEEELE

_——

Batman vs. Superman Henry Cavill Ben Affleck

fun amusing news
fact thought headline
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Automatic Segment Scoring

o Labels: conversation-level user ratings

o Features

o conversation-act-based metrics
o other features such as bag-of-words, verbosity, ...

o Two different model hypotheses

o H1: segment scores are predicted just like conversation scores
o H2: a conversation score is some aggregation of segment scores

40



Automatic Segment Scoring

. _ Both learned from
o H1: Linear Scoring Model - conversation-level
rating regression

o segment score = f(segment features)

o conversation score = f(conversation features) B NumTurns

O f(X1) ey Xg) = ?:1 Ui X + Ug Linear
o H2: BiLSTM Scoring Model subdialog BILSTM
o segment score s; = hy(segment features) . 04
o hq, h,, ..., hr: BiLSTM over individual segments § 0.9
O Smeqn = Mean(sy, Sy, ..., S7), ... §
o conversation score = g(Smean, Smaxr Smin) - 0 l

O g(Smean» Smax Smin) =) ViSm + Vg "



Evaluation of Subdialog Scores | >t/ mvier

features about the
user by using

o Human judgments on subdialog pairs (A, B) | surrounding context
o 250 within-conversation pairs (same user)

o 250 cross-conversation pairs (same topic)

o 5judgments per pair

o Spearman rank correlation

p between x and y

o x =voteson A -voteson B
o y =score of A - score of B

Spearman p

0.4
0.3
0.2
0.1

0

B NumTurns
Linear
Subdialog BiLSTM

+.17
r

Within Cross

Conversation Conversation
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Summary: Sounding Board System

o A mixed-initiative and open-domain socialbot

o user-centric and content-driven dialog strategies
o it is a new and fast-growing area and we are one of the pioneers
o several strategies have influenced 2018 socialbots

o System architecture
o a hierarchical DM framework for efficient dialog control
o social chat knowledge graph

o several 2018 socialbots follow a similar DM architecture and
acknowledge the importance of content
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Summary: Graph-Based Representation

o Extended conversations grounded on a document

o a graph-based document representation
o bridge machine reading and dialog control

o Automatic document representation construction
o a model for storytelling chain creation
o an unsupervised dependency-based question generation

o new NLP tasks that emphasize both dialog context and
sentence/question interestingness
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Summary: Multi-Level Evaluation

o In-depth analysis on aspects that influence user ratings

o conversation acts for socialbot conversations
o valuable insights for socialbot evaluation
o better metrics than the conversation length baseline

o Automatic segment scoring for system diagnosis

o a new hierarchical dialog model for socialbot conversations
o two scoring models with different hypotheses for segments scores
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Future Directions

o Open-domain and mixed-initiative conversational Al

o large-scale knowledge base & computational dialog control
o switch between two roles (primary speaker & active listener)

o Document/content analysis for conversational Al

o unstructured text to structured representation
o understand interestingness and socially appropriateness

o Human-in-the-loop for conversational Al

o data collection & evaluation
o crowd-powered system

47
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